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a b s t r a c t

In this paper, we develop an efficient difference scheme for the non-Fickian
time-fractional diffusion equations with variable coefficient. This model may
be considered as a generalization of the Kolmogorov–Petrovskii–Piskunov type
equation, which is widely used to describe some important phenomena in the fields
of chemistry, biology and viscoelastic materials. The stability and convergence of
the difference scheme in the maximum norm are proved by the discrete energy
method under mild conditions. A numerical example is carried out to verify our
theoretical analysis results.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we focus on the non-Fickian time-fractional diffusion equations in the following form

C
0 Dα

t u(x, t)=κ1
∂

∂x

(
ω(x, t)∂u(x, t)

∂x

)
+ κ2

δ

∫ t

0
e− t−s

δ
∂2u(x, s)

∂x2 ds+f(x, t), 0 < x < L, 0 < t ≤ T, (1.1)

u(x, 0) = φ(x), 0 < x < L; u(0, t) = u0(t), u(L, t) = uL(t), 0 ≤ t ≤ T, (1.2)

here δ, κ1, κ2 are positive constants, C
0 Dα

t denotes the Caputo fractional derivative of order α defined by

C
0 Dα

t u(x, t) = 1
Γ (1 − α)

∫ t

0

∂u(x, η)
∂η

1
(t − η)α dη, 0 < α < 1,

nd Γ (·) denotes the Euler’s Gamma function. Also we suppose that there exist two constants C1 and C2
uch that the given smooth function ω(x, t) satisfies 0 < C1 ≤ ω(x, t) ≤ C2 when 0 ≤ x ≤ L, 0 ≤ t ≤ T .

This model is widely used to describe the phenomena of the wave propagation in the non-equilibrium
edia come from physics, chemistry, biology and so on, see e.g., [1]. The non-Fickian diffusion occurs also in

iscoelastic materials where the classical diffusion equation has been replaced by a Volterra type equation, see
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e.g., [2,3] and references therein. Also, this model may be considered as a generalization of the Kolmogorov–
Petrovskii–Piskunov (KPP) type equation, which is obtained by introducing the non Fickian flux to overcome
the limitations of the classical KPP equations [4].

As is known to all, it is almost impossible to obtain a closed-form solution of fractional differential
equations in general. As a result, the development of effective numerical methods becomes an important
option. Up to now, almost all the existing works focus on the classical integer order problems. For instance,
Li et al. [5] investigate the long time behavior of non-Fickian delay reaction–diffusion equations. Zhang
et al. [6] construct two types of higher-order linearized multistep difference schemes for same problems.
Ferreira et al. [7] developed some finite difference discretizations for the quasilinear non-Fickian diffusion
equations of Volterra type with non singular and weakly singular kernels, where the convergence results are
established in the sense of the discrete L2 norm by using an unconventional means which can reduce the
equirement of smoothness of theoretical solution when the usual split technique is used.

Compared with the classical integer order problems, two potential integral terms of the fractional problem
1.1)–(1.2) significantly increases the difficulty in algorithm construction and numerical analysis. Thus, it is
ecessary to construct efficient numerical approximations for such problem. Given all this, we propose an
fficient difference scheme for the non-Fickian time-fractional problem (1.1)–(1.2) with variable coefficient by
ombining the popular L1 formula and the compound trapezoidal formula. More importantly, the difference
cheme is proved to be stable and convergent in the maximum norm under mild conditions.

The structure of this paper is organized as follows. In Section 2, we construct a difference scheme for the
roblem (1.1)–(1.2). In Section 3, a crucial priori estimate is first proved via the energy method, and the
tability and convergence of the scheme in the maximum norm are studied. In Section 4, some numerical
esults are provided to verify our theoretical analysis. A brief conclusion is given in Section 5.

. Derivation of the difference scheme

We first define a partition of the rectangle [0, L] × [0, T ] by the mesh Ωh,τ = Ωh × Ωτ , where Ωh =
{xi|xi = ih, 0 ≤ i ≤ M},Ωτ = {tk|tk = kτ, 0 ≤ k ≤ N} with h = L/M and τ = T/N . Let Vh = {v|v =
(v0, v1, . . . , vM )} be grid function space on Ωh and V̊h = {v|v ∈ Vh, v0 = vM = 0}.

For any u, v ∈ V̊h, we introduce the following discrete inner products

(u, v) = h

M−1∑
i=1

uivi, (u, v)ω = h

M−1∑
i=1

uiviωi, (2.1)

nd norms and seminorms

∥u∥ =
√

(u, v), |u|1 =
√

(δxu, δxu), ∥u∥ω =
√

(u, u)ω, |u|1,ω =
√

(δxu, δxu)ω, (2.2)

here δxvi+ 1
2

= 1
h (vi+1 − vi). Also, we denote

Dα
τ uk = 1

Γ (1 − α)τ

[
a

(α)
0 uk −

k−1∑
j=1

(a(α)
k−j−1 − a

(α)
k−j)uj − a

(α)
k−1u0

]
, (2.3)

here a
(α)
k = τ1−α

1−α [(k + 1)1−α − k1−α], k ∈ N. Then, we have the following lemma.

Lemma 2.1 ([8]). Suppose that f ∈ C2[0, tk] and 0 < α < 1. Let

Rk(f) = C
0 Dα

t f(tk) − Dα
τ fk, (2.4)

hen we have
|Rk(f)| ≤ τ2−α

Γ (2 − α)

[
1 − α

12 + 22−α

2 − α
− (1 + 2−α)

]
max

0≤t≤tk

|f ′′(t)|. (2.5)
2
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Suppose u ∈ C
(4,2)
x,t ([0, L] × [0, T ]), i.e., the solution u(x, t) of the problem (1.1)–(1.2) has continuous

partial derivatives up to the fourth order in space and second order in time. Define the grid functions

Uk
i = u(xi, tk), ωk

i = ω(xi, tk), fk
i = f(xi, tk), 0 ≤ i ≤ M, 0 ≤ k ≤ N.

Let g(x, t, s) = ρ(t, s) ∂2u(x,s)
∂x2 with ρ(t, s) = e− t−s

δ , considering (1.1) at (xi, tk) we have

C
0 Dα

t u(xi, tk) = κ1
∂

∂x

(
ω

∂u

∂x

) ⏐⏐⏐
(xi, tk)

+ κ2

δ

∫ tk

0
g(xi, tk, s)ds+f(xi, tk), 1 ≤ i ≤ M −1, 1 ≤ k ≤ N. (2.6)

pplying the composite trapezoidal rule, we obtain∫ tk

0
g(xi, tk, s)ds =

k−1∑
l=0

∫ tl+1

tl

g(xi, tk, s)ds = τ

2

k−1∑
l=0

(ρl
kδ2

xU l
i + ρl+1

k δ2
xU l+1

i ) + O(h2 + τ2), (2.7)

here ρl
k = ρ(tk, tl) and δ2

xU l
i = 1

h (δxU l
i+ 1

2
− δ2

xU l
i− 1

2
). This together with Lemma 2.1 and

∂

∂x

(
ω

∂u

∂x

) ⏐⏐⏐
(xi, tk)

= δx(ωk
i δxUk

i ) + O(h2), (2.8)

e can obtain from (2.6) that

Dα
τ Uk

i = κ1δx(ωk
i δxUk

i ) + κ2τ

2δ

k−1∑
l=0

(ρl
kδ2

xU l
i + ρl+1

k δ2
xU l+1

i )+fk
i +Rk

i , 1 ≤ i ≤ M −1, 1 ≤ k ≤ N, (2.9)

nd there exists a positive constant C3 such that

|Rk
i | ≤ C3(τ2−α + h2), 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N. (2.10)

Omitting the small terms in (2.9), we obtain the difference scheme as follows

Dα
τ uk

i = κ1δx(ωk
i δxuk

i ) + κ2τ

2δ

k−1∑
l=0

(ρl
kδ2

xul
i + ρl+1

k δ2
xul+1

i ) + fk
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N, (2.11)

u0
i = φ(xi), 0 ≤ i ≤ M, (2.12)

uk
0 = u0(tk), uk

M = uL(tk), 0 ≤ k ≤ N, (2.13)

here the initial boundary conditions (1.2) have been used.

. Stability and convergence

In this section, we focus on analyzing the stability and convergence of the difference scheme (2.11)–(2.13).
efore doing that, we introduce and prove several necessary lemmas.

emma 3.1 ([8]).Suppose α ∈ (0, 1), a
(α)
k (0 ≤ k ≤ n − 1, n ≥ 1) is defined by (2.3), then it holds that

a
(α)
0 > a

(α)
1 > a

(α)
2 > · · · > a

(α)
n−2 > a

(α)
n−1. (3.1)

emma 3.2 ([9,10]). For any grid function v ∈ V̊h, we have

∥v∥2
∞ ≤ L

4 |v|21, ∥v∥2 ≤ L2

6 |v|21, C1∥v∥2 ≤ ∥v∥2
ω ≤ C2∥v∥2, C1|v|21 ≤ |v|21,ω ≤ C2|v|21. (3.2)
3
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Next, we give a priori estimate, which plays a crucial role in the analysis of the difference scheme.

Theorem 3.3. Suppose {vk
i |0 ≤ i ≤ M, 0 ≤ k ≤ N} satisfies that

Dα
τ vk

i = κ1δx(ωk
i δxvk

i ) + κ2τ

2δ

k−1∑
l=0

(ρl
kδ2

xvl
i + ρl+1

k δ2
xvl+1

i ) + qk
i , 1 ≤ i ≤ M −1, 1 ≤ k ≤ N, (3.3)

v0
i = ϕ(xi), 0 ≤ i ≤ M, (3.4)

vk
0 = 0, vk

M = 0, 0 ≤ k ≤ N. (3.5)

hen we have

τ

m∑
k=1

∥vk∥2
∞ ≤ L

4

(
9κ2

2T 2

9κ2
2T + 1 + T 1−αL2

2κ1Γ (2 − α)C1

)
|ϕ|21 + 3L3

16κ2
1C2

1
τ

m∑
k=1

∥qk∥2, 1 ≤ m ≤ N, (3.6)

hen τ < τ0 := (2κ2
1δ2C2

1 )/(9κ2
2T + 1).

roof. Multiplying (3.3) by hvk
i and summing up for i from 1 to M −1 and for k from 1 to m, we obtain

h

M−1∑
i=1

m∑
k=1

(Dα
τ vk

i )vk
i = h

M−1∑
i=1

m∑
k=1

[
κ1(δx(ωk

i δxvk
i ))vk

i + κ2τ

2δ

k−1∑
l=0

(ρl
kδ2

xvl
i + ρl+1

k δ2
xvl+1

i )vk
i + qk

i vk
i

]
. (3.7)

Using the Cauchy–Schwarz inequality and noticing that 0 < ρl
k+1 < ρl+1

k+1 < 1, we have

h

M−1∑
i=1

m∑
k=1

(δx(ωk
i δxvk

i ))vk
i =−

m∑
k=1

|vk|21,ω, h

M−1∑
i=1

m∑
k=1

qk
i vk

i ≤ 2κ1C1

L2

m∑
k=1

∥vk∥2 + L2

8κ1C1

m∑
k=1

∥qk∥2, (3.8)

nd
κ2τ

2δ
h

M−1∑
i=1

m∑
k=1

k−1∑
l=0

(ρl
kδ2

xvl
i + ρl+1

k δ2
xvl+1

i )vk
i ≤ C4τ

m∑
k=1

k−1∑
l=0

(|vl|21 + |vl+1|21) + C5τ

m∑
k=1

|vk|21, (3.9)

where C4 = 3κ1κ2
2C1

2(9κ2
2T +1) and C5 = 9κ2

2T +1
12κ1δ2C1

. Moreover, we have

m∑
k=1

(Dα
τ vk

i )vk
i = 1

µτ

m∑
k=1

⎡⎣a
(α)
0 vk

i −
k−1∑
j=1

(a(α)
k−j−1 − a

(α)
k−j)vj

i − a
(α)
k−1v0

i

⎤⎦ vk
i

≥ 1
µτ

⎡⎣ m∑
k=1

a
(α)
0 (vk

i )2− 1
2

m∑
k=2

(a(α)
0 −a

(α)
k−1)(vk

i )2− 1
2

m−1∑
j=1

(a(α)
0 −a

(α)
m−j)(vj

i )2− 1
2

m∑
k=1

a
(α)
k−1[(v0

i )2+(vk
i )2]

⎤⎦
= 1

µτ

[
1
2

m∑
k=1

a
(α)
m−k(vk

i )2 − 1
2

m∑
k=1

a
(α)
k−1(v0

i )2

]
≥ 1

µτ

[
1
2a

(α)
m−1

m∑
k=1

(vk
i )2 − t1−α

m

2(1 − α) (v0
i )2

]
, (3.10)

where µ = Γ (1 − α) and the monotone property (3.1) in Lemma 3.1 has been used.
Substituting (3.8)–(3.10) into (3.7), and applying Lemma 3.2, we obtain

1
µτ

[
1
2

m∑
k=1

a
(α)
m−1∥vk∥2 − t1−α

m

2(1 − α)∥v0∥2

]
+ κ1C1

m∑
k=1

|vk|21

≤ C4τ

m∑
k=1

k−1∑
l=0

(|vl|21 + |vl+1|21) + C5τ

m∑
k=1

|vk|21 + κ1C1

3

m∑
k=1

|vk|21 + L2

8κ1C1

m∑
k=1

∥qk∥2. (3.11)
4
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Noticing that
m∑

k=1

k−1∑
l=0

(|vl|21 + |vl+1|21) = m|v0|21 +
m∑

k=1
(2(m − k) + 1)|vk|21, (3.12)

and mτ ≤ T , we further have
1
2

m∑
k=1

a
(α)
m−1∥vk∥2 + 2κ1C1µ

3 τ

m∑
k=1

|vk|21

≤ C4Tµτ
(

|v0|21 + 2
m∑

k=1
|vk|21

)
+ L2µ

8κ1C1
τ

m∑
k=1

∥qk∥2 + t1−α
m

2(1 − α)∥v0∥2 + C5µτ2
m∑

k=1
|vk|21. (3.13)

This implies that (
1 − 3C4T

κ1C1
− 3C5τ

2κ1C1

)
τ

m∑
k=1

|vk|21 ≤ C6|v0|21 + 3L2τ

16κ2
1C2

1

m∑
k=1

∥qk∥2, (3.14)

here
C6 = 3C4T 2

2κ1C1
+ T 1−αL2

8κ1C1Γ (2 − α) >
3C4T

2κ1C1
τ + T 1−αL2

8κ1C1Γ (2 − α) .

Noticing that

1 − 3C4T

κ1C1
− 3C5τ

2κ1C1
= 1 − 9κ2

2T

2(9κ2
2T + 1) − (9κ2

2T + 1)τ
8κ2

1δ2C2
1

>
1
2 − (9κ2

2T + 1)τ
8κ2

1δ2C2
1

>
1
4

hen τ < τ0. Combining (3.3) and (3.14) with Lemma 3.2, we have

τ

m∑
k=1

∥vk∥2
∞ ≤ L

4

(
9κ2

2T 2

9κ2
2T + 1 + T 1−αL2

2κ1Γ (2 − α)C1

)
|ϕ|21 + 3L3

16κ2
1C2

1
τ

m∑
k=1

∥qk∥2, 1 ≤ m ≤ N. (3.15)

his proof is completed. □

Based on above priori estimate, we can immediately obtain the following stability result.

heorem 3.4 (Stability). The difference scheme (2.11)–(2.13) is stable in the maximum norm with respect
o the initial value φ and the right hand side function f when τ < τ0, where τ0 is defined in (3.6).

Next, we discuss the convergence of the difference scheme (2.11)–(2.13).

Theorem 3.5 (Convergence). Let u ∈ C
(4,2)
x, t ([0, L] × [0, T ]) be solution of the problem (1.1)–(1.2), and uk

i be
solution of the difference scheme (2.11)–(2.13). Denote ek

i = u(xi, tk) − uk
i , then we have

τ

m∑
k=1

∥ek∥2
∞ ≤ 3L3T

16κ2
1C2

1
C2

3 (τ2−α + h2)2, 1 ≤ m ≤ N. (3.16)

roof. From (2.9), we have the error equation as

Dα
τ ek

i = κ1δx(ωk
i δxek

i ) + κ2τ

2δ

k−1∑
l=0

(ρl
kδ2

xel
i + ρl+1

k δ2
xel+1

i ) + Rk
i , 1 ≤ i ≤ M − 1, 1 ≤ k ≤ N, (3.17)

e0
i = 0, 0 ≤ i ≤ M, (3.18)

ek
0 = 0, ek

M = 0, 0 ≤ k ≤ N. (3.19)

pplying the priori estimate in Theorem 3.3 and noticing that (2.10) and |e0|1 = 0, we get

τ

m∑
k=1

∥ek∥2
∞ ≤ 3L3T

16κ2
1C2

1
C2

3 (τ2−α + h2)2, 1 ≤ m ≤ N. (3.20)

his proof is completed. □
5
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Table 1
Errors and convergence orders for different α when h = 1/1000 (left) and τ = 1/10000 (right).

τ α = 0.30 α = 0.70 h α = 0.30 α = 0.70

E(h, τ) Ord1 E(h, τ) Ord1 E(h, τ) Ord2 E(h, τ) Ord2

1/20 4.07e−4 – 3.36e−3 – 1/4 2.24e−3 – 2.26e−3 –
1/40 1.32e−4 1.63 1.39e−3 1.27 1/8 5.73e−4 1.97 5.77e−4 1.97
1/80 4.24e−5 1.63 5.74e−4 1.28 1/16 1.43e−4 2.00 1.45e−4 2.00
1/160 1.36e−5 1.64 2.35e−4 1.29 1/32 3.58e−5 1.99 3.67e−5 1.98

τ α = 0.30 α = 0.70 h α = 0.30 h α = 0.70

CE(h, τ) COrd1 CE(h, τ) COrd1 CE(h, τ) COrd2 CE(h, τ) COrd2

1/20 3.54e−4 – 2.63e−3 – 1/4 1.11e−3 – 1.05e−3 –
1/40 1.10e−4 1.68 1.08e−3 1.29 1/8 2.77e−4 2.00 2.64e−4 1.99
1/80 3.44e−5 1.68 4.39e−4 1.29 1/16 6.97e−5 1.99 6.66e−5 1.98
1/160 1.07e−5 1.68 1.79e−4 1.30 1/32 1.74e−5 2.00 1.70e−5 1.97

4. Numerical results

In this section, we test the effectiveness of the method from two aspects of the maximum error E(h, τ) =
ax1≤k≤N ∥Uk−uk∥∞ and the cumulative error CE(h, τ) =

√
τ

∑N
k=1 ∥Uk − uk∥2

∞. The convergence orders
n time and space directions based on the maximum error are calculated by

Ord1 = log2

(
E(h, τ)

E(h, τ/2)

)
, Ord2 = log2

(
E(h, τ)

E(h/2, τ)

)
,

for sufficiently small h and τ respectively. The convergence order COrd1 and COrd2 based on the cumulative
error are defined and calculated similarly.

Example 4.1. Consider the problem (1.1)–(1.2) with ω(x, t) = sin2(xt) + 1
2 on the domain [0, 1] × [0, 1].

The functions φ(x), u0(t), uL(t) and f(x, t) are determined by the exact solution u(x, t) = ext2.

In what follows, we apply the difference scheme (2.11)–(2.13) to solve the example for different values of
. Without loss of generality, we set the parameters κ1 = κ2 = σ = 1.
The errors and convergence orders for α = 0.30 and 0.70 are shown in Table 1. We can observe that the

ndex Ord1 and COrd1 always tend to 2 − α, while Ord2 and COrd2 tend to 2 as τ and h are reduced by a
actor of 2 respectively. It means that the suggested difference scheme has accuracy of order 2 − α in time
nd order 2 in space for 0 < α < 1, which is consistent with our theoretical analysis in Theorem 3.5.

. Conclusion

In this paper, we propose an efficient difference scheme for the variable coefficient non-Fickian time-
ractional diffusion equations. The stability and convergence under very mild conditions is shown by using
he discrete energy method. The results in this paper can be directly extended to the fractional quasilinear
on-Fickian equation [7] when the kernel to be governed by some positive constant. In future work, we hope
o construct the high order algorithms for the fractional quasilinear non-Fickian diffusion problem.
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