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Convergence

1. Introduction

In this paper, we focus on the non-Fickian time-fractional diffusion equations in the following form

0 ou(z,t)\ ko [t t=s O%u(x,s)
Crya _ ) ?
o Dfu(x,t) =K1 5 (w(a:, t) o ) + 5/, e —

u(z,0) = p(x), 0 <z < L; u(0,t) =up(t), u(L,t) =ur(t), 0<t<T, (1.2)

ds+f(z,t),0 <z < L,0<t<T, (1.1)

where 6, k1, kg are positive constants, §D¢ denotes the Caputo fractional derivative of order a defined by

1 Pou(z,n) 1
Crya — ) 1
o Difu(z, t) F(l—a)/o n (t—n)adn’ 0<a<l,

and I'(-) denotes the Euler’s Gamma function. Also we suppose that there exist two constants C7 and Cy
such that the given smooth function w(x,t) satisfies 0 < Cy < w(x,t) < Cy when 0 <z < L,0<¢<T.
This model is widely used to describe the phenomena of the wave propagation in the non-equilibrium
media come from physics, chemistry, biology and so on, see e.g., [1]. The non-Fickian diffusion occurs also in
viscoelastic materials where the classical diffusion equation has been replaced by a Volterra type equation, see
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e.g., [2,3] and references therein. Also, this model may be considered as a generalization of the Kolmogorov—
Petrovskii-Piskunov (KPP) type equation, which is obtained by introducing the non Fickian flux to overcome
the limitations of the classical KPP equations [4].

As is known to all, it is almost impossible to obtain a closed-form solution of fractional differential
equations in general. As a result, the development of effective numerical methods becomes an important
option. Up to now, almost all the existing works focus on the classical integer order problems. For instance,
Li et al. [5] investigate the long time behavior of non-Fickian delay reaction—diffusion equations. Zhang
et al. [6] construct two types of higher-order linearized multistep difference schemes for same problems.
Ferreira et al. [7] developed some finite difference discretizations for the quasilinear non-Fickian diffusion
equations of Volterra type with non singular and weakly singular kernels, where the convergence results are
established in the sense of the discrete L? norm by using an unconventional means which can reduce the
requirement of smoothness of theoretical solution when the usual split technique is used.

Compared with the classical integer order problems, two potential integral terms of the fractional problem
(1.1)—(1.2) significantly increases the difficulty in algorithm construction and numerical analysis. Thus, it is
necessary to construct efficient numerical approximations for such problem. Given all this, we propose an
efficient difference scheme for the non-Fickian time-fractional problem (1.1)—(1.2) with variable coefficient by
combining the popular L, formula and the compound trapezoidal formula. More importantly, the difference
scheme is proved to be stable and convergent in the maximum norm under mild conditions.

The structure of this paper is organized as follows. In Section 2, we construct a difference scheme for the
problem (1.1)—(1.2). In Section 3, a crucial priori estimate is first proved via the energy method, and the
stability and convergence of the scheme in the maximum norm are studied. In Section 4, some numerical
results are provided to verify our theoretical analysis. A brief conclusion is given in Section 5

2. Derivation of the difference scheme

We first define a partition of the rectangle [0, L] x [0,T] by the mesh 2, ; = 2, x £2;, where {2, =
{zilr; =ih,0 <i < M}, 02, = {tg|ty = k1,0 < k < N} with h = L/M and 7 = T/N. Let V), = {v|v =
(vo,v1,...,var)} be grid function space on 2, and V), = {v|v € Vh,v9 = vy = 0}.

For any u,v € f/h, we introduce the following discrete inner products

M-1 M-1
(u,v) =h Z uvg, (u,v), =h Z U VW5, (2.1)
i=1 i=1
and norms and seminorms

llul] = v (u,v), |ul; =/ (0zu, 6zu), ||ulle = v/ (u,1)w, |u|17w =/ (0zu, 0,1)y, (2.2)

_ 1
where 5zvi+% = 3 (vig1 —v;). Also, we denote

k—1

(e} C 1 (o3 ] «
Doy = T o) [ao uf - akjj)uj - a,(C )1u0}, (2.3)

J=1

where a(*) = T % [(k+ 1)1~ — k1=], k € N. Then, we have the following lemma.

-«

Lemma 2.1 (/8]). Suppose that f € C%[0,tx] and 0 < o < 1. Let

RE(f) = §Dyf(te) — D2, (24)
then we have 1o 1 92-a
& < T — . o "
BN < pa—ay |2 Taa T2 Jmax 1170)] (2.5)
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Suppose u € 0%2)([07[/] x [0,T)), i.e., the solution u(x,t) of the problem (1.1)—(1.2) has continuous
partial derivatives up to the fourth order in space and second order in time. Define the grid functions

7 K3

BZu(w,s) . —izs
Ox2

Let g(z,t,s) = p(t, s) with p(t,s) = e~ 3 , considering (1.1) at (z;,t;) we have

0 ou
gD u(xg, ty) = m@ ( 63:)

tg
)+% 9(@, by, s)ds+ (@i ti), 1 <i < M—1,1<k<N. (26)
wz’ ty 0

Applying the composite trapezoidal rule, we obtain

k—1

" ) _ fi+1 , _T ! s2p7 I+1 5277141 2 2
g(xi, by, s)ds = 9(wi, by, s)ds = 3 > (ph02U} + piH U + O(h% + 72, (2.7)
0 t 1=0

— 62U ). This together with Lemma 2.1 and
T3

0 ou
Il el =8, (wFs,UF) + O(h? 2.8
o (950, = latsntt + o), (28)
we can obtain from (2.6) that
k—
DOUF = k16, (whs,UF) + Z pLO2UL + PP S2UM ) F P RE1<i<M—-1,1<k<N, (2.9)
1=0
and there exists a positive constant C3 such that
IRE| < C3(r* 4+ h?%), 1<i<M-1,1<k<N. (2.10)

Omitting the small terms in (2.9), we obtain the difference scheme as follows

k—1
DoUF = k18, (wh o ub) + ’%T (phoZul + plto2ult !y 4 fF 1 <i<M-1,1<k<N, (2.11)
=0
ud = p(z;), 0<i < M, 2.12)
ulb = wuo(ty),ul; = ur(ty), 0< k<N 2.13)

where the initial boundary conditions (1.2) have been used.

3. Stability and convergence

In this section, we focus on analyzing the stability and convergence of the difference scheme (2.11)—(2.13).
Before doing that, we introduce and prove several necessary lemmas.

Lemma 3.1 (/8)).Suppose a € (0,1), (O‘)(O <k<n-—1,n>1) is defined by (2.3), then it holds that

(a) (@) ( )

> ay >->al®, > el (3.1)

Lemma 3.2 ([9,10]). For any grid function v € Vh, we have

L?
il < 5 Ivlp lol* < *Ivlp Culloll? < Jlollg < Callol®, Culof; < olf, < Calolr. (3.2)

3
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Next, we give a priori estimate, which plays a crucial role in the analysis of the difference scheme.

Theorem 3.3. Suppose {vF|0 <i < M,0 < k < N} satisfies that

k—1
DovF = ky6,(wFo0k) + ié > (phozvl+ piH a2 +gf, 1<i < M-1,1< k<N, (3.3)
=0

Then we have

Z I ” 9K3T? N Tl-ag? |¢|2 i I 2 1<m<N (3:6)
T v oo— 4 2T+1 2/€1F(2—C¥)Cl 1 ].6 202 q Sm = 1V, .

when T < 19 == (2630%C3)/(963T + 1).

Proof. Multiplying (3.3) by hv¥ and summing up for i from 1 to M —1 and for k from 1 to m, we obtain

M—-1 k

h Z(Dﬁvf)vf =h Z [51(5 (WhFovF Z LoZol 4 plFta2olt )l 4 ghok | (3.7)

i=1 k=1 i=1 k=1 =0

Using the Cauchy—Schwarz inequality and noticing that 0 < pl, < pf;ll < 1, we have

M—-1m M—-1m
2/43101
B (Galwio) ZM\W hy Y divEs ZH P+ 5 Zn 7, (38)
i=1 k=1 i=1 k=1 k=1
and
HQT M—-1 m k-1 m k—1 9 9 m 9
S5 D0 DD ehdiu+ R ey < Car Y 0N (W + ) + Cor L (39)
i=1 k=1 1=0 k=1 1=0 k=1
k1k5C k2T
where Cy = % and Cs = %. Moreover, we have
m 1 m k—1
a () a) a) (cv)
Z(D k ,U,TZ o vk Z ( —Jj—1 al(C ]) i T g 1U ’Uf
k=1 k=1 j=1
1 m 1 m 1m71 )
> > a0 =5 ) g —ai) () =5 D (ag” —ay) ) () Za(‘” +(vF)’]
Lkl et k=2 j=1
_ LIS o e lzm:aw 92| > 12 7(1}0)2 , (3.10)
T 2 P m—k\" 9 P k—1\"7 2 m 1 o a) i

where p = I'(1 — ) and the monotone property (3.1) in Lemma 3.1 has been used.
Substituting (3.8)—(3.10) into (3.7), and applying Lemma 3.2, we obtain

LIS (@) k2 th 02 kaQ
— QZam_lllv I —mllv 17| + k1 12\“ lh

k=1 k=1
m k—1 K C m
1v1
< Car DSOS (W] + ) +CsTZ\v’“I1 mOIL ’“\1+ leq I”. (3.11)
k=11=0 k=1 k=1
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Noticing that

el
I
—

2 2 2 " 2
(['ly + 101 ) = mfo®l + D (2(m — k) + D", (3.12)
k=1

NIE

k=1
and m7 < T, we further have

. (e 2/@'101/1
P o P+ = Z| i
k=1 k=1

N
I
=3

—_

2 - 2 - 2
< uTr (10 + 2" M) + 5 Zuq >+ )||v°||2+05WQZ\v'“I1- (3.13)
k=1 k=1
This implies that
30,7 3057 2 02 3L &N ke
1- — <C 3.14
(1-22 QHI(JI)Tkz_jlw 1< ol + ey 32 I (3.14)
where
c 3C,T? Ti=oL? - 3C4T n Ti=oL?
= T .
6 2/‘6101 8%101[‘(2 — Oé) 2%101 8%101]_'(2 — Oé)
Noticing that
1 3C4T  3Cst 1 9k3T 3 (93T + 1)T S 1 (9x3T + 1)T o 1
k1C1 26101 2(9K3T +1) 8k262C? 2 8Kk262C7 4

when 7 < 79. Combining (3.3) and (3.14) with Lemma 3.2, we have

9k3T? T1-oL? 3L3 -
§ : k 2 2 k12
__ § 1<m<N. 1
T HU ||oo = 4 ( 2T 1 2/‘61 F(2 04)01) |¢|1 16/@%0127-’6:1 ”q || ) Sms (3 5)

This proof is completed. [J

Based on above priori estimate, we can immediately obtain the following stability result.

Theorem 3.4 (Stability). The difference scheme (2.11)—(2.13) is stable in the mazimum norm with respect
to the initial value ¢ and the right hand side function f when T < 19, where 7o is defined in (3.6).

Next, we discuss the convergence of the difference scheme (2.11)—(2.13).

Theorem 3.5 (Convergence). Let u € C’g(J ’ )([0 L] x [0,T)) be solution of the problem (1.1)~(1.2), and u¥ be
solution of the difference scheme (2.11)~(2.13). Denote e¥ = u(x;,tx) — u¥, then we have
3L3T
k 2-a | p2)2
TZ”e ”°°—16 27 C2(r2=* + h%)2, 1 <m < N. (3.16)

Proof. From (2.9), we have the error equation as

k-1
D%k = k16, (who ek) + %T (pho2el + plt162e ) + RF 1 <i<M—1,1<k <N, (3.17)

1=0
e =0,0<i<M, 3.18
ek =0,ek,=0,0<k<N 3.19)

Applying the priori estimate in Theorem 3.3 and noticing that (2.10) and |eO|1 =0, we get
3L3T
k 2—a 2\2
TZII IIOO_16 200 C3(r*~* +h*)? 1<m <N, (3.20)

This proof is completed. [



Z. Feng, M. Ran and Y. Liu Applied Mathematics Letters 121 (2021) 107489

Table 1
Errors and convergence orders for different o« when h = 1/1000 (left) and = = 1/10000 (right).
T a = 0.30 a = 0.70 h a = 0.30 a = 0.70
E(h,T) Ord1l E(h,T) Ord1l E(h,T) Ord2 E(h,T) Ord2
1/20  4.07e—4  — 3.36e—3 - 1/4  2.24e—3 - 2.26e—3 -
1/40 1.32e—4 1.63 1.39e—3 1.27 1/8 5.73e—4 1.97 5.7Te—4 1.97
1/80 4.24e—5 1.63 5.74e—4 1.28 1/16 1.43e—4 2.00 1.45e—4 2.00
1/160 1.36e—5 1.64 2.35e—4 1.29 1/32 3.58e—5 1.99 3.67e—5 1.98
T a = 0.30 a = 0.70 h a =0.30 h «a=0.70
CE(h,7) COrdl CE(h,7) COrdl CE(h,7) COrd2 CE(h,7) COrd2
1/20 3.54e—4 - 2.63e—3 — 1/4 1.11e—3 - 1.05e—3 —
1/40 1.10e—4 1.68 1.08e—3 1.29 1/8 2.77e—4 2.00 2.64e—4 1.99
1/80 3.44e—5 1.68 4.39¢e—4 1.29 1/16 6.97e—5 1.99 6.66e—5 1.98
1/160 1.07e—5 1.68 1.79e—4 1.30 1/32 1.74e—5 2.00 1.70e—5 1.97

4. Numerical results

In this section, we test the effectiveness of the method from two aspects of the maximum error E(h,7) =

. N
maxi<k<p ||[U¥—u¥||o and the cumulative error CE(h, 7) = \/7' > iy lUF — u¥||2 . The convergence orders
in time and space directions based on the maximum error are calculated by

Ordl = log, (M) ,0rd2 = log, <m) :

for sufficiently small h and 7 respectively. The convergence order COrd1 and COrd2 based on the cumulative
error are defined and calculated similarly.

Example 4.1. Consider the problem (1.1)—(1.2) with w(z,t) = sin®(zt) + 3 on the domain [0, 1] x [0, 1].
The functions (), ug(t), ur(t) and f(x,t) are determined by the exact solution u(z,t) = e®t2.

In what follows, we apply the difference scheme (2.11)—(2.13) to solve the example for different values of
«. Without loss of generality, we set the parameters k1 = kKo = 0 = 1.

The errors and convergence orders for a = 0.30 and 0.70 are shown in Table 1. We can observe that the
index Ordl and COrdl always tend to 2 — a, while Ord2 and COrd2 tend to 2 as 7 and h are reduced by a
factor of 2 respectively. It means that the suggested difference scheme has accuracy of order 2 — « in time
and order 2 in space for 0 < a < 1, which is consistent with our theoretical analysis in Theorem 3.5.

5. Conclusion

In this paper, we propose an efficient difference scheme for the variable coefficient non-Fickian time-
fractional diffusion equations. The stability and convergence under very mild conditions is shown by using
the discrete energy method. The results in this paper can be directly extended to the fractional quasilinear
non-Fickian equation [7] when the kernel to be governed by some positive constant. In future work, we hope
to construct the high order algorithms for the fractional quasilinear non-Fickian diffusion problem.
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